
Internship Report
Deep Learning for Activity Classification in

Egocentric Videos
Vardaan Pahuja

Mentor: Dr. Arijit Biswas and Dr. Om Deshmukh
Xerox Research Center India

Email: vardaanpahuja@iitkgp.ac.in

Abstract

The problem of classifying pre-segmented videos of daily living activities is addressed.We
use CNN features to train an object recognition model and subsequently Temporal Pyramid
based features are used in SVMs.In a second approach, LSTM based architecture is used to
model the temporal context is videos.

1 Introduction

Activity recognition is a classic task in computer vision. Traditionally, the above limitations have
been addressed by using actor-scripted video footage of posture-defined action categories such
as skipping or jumping. Such categories maybe artificial because they tend not be functionally
defined, a core aspect of human movement. We focus on the problem of detecting activities of
daily living (ADL) from first-person wearable cameras such as Google Glass. The dataset contains
of 20 videos ranging from 30-60 minutes long of people performing unscripted, everyday activities.
The dataset is annotated with activities (along with segmentation) and object tracks. The goal is
to classify these video segments into a set of pre-defined activity categories.

2 Applications

Tele-rehabilitation: A variety of clinical benchmarks used to evaluate everyday functional ac-
tivities such as picking up a telephone, drinking from a mug, and turning on a light switch, etc for
patients suffering from neural diseases. These evaluations are currently done in the hospital, but a
computer-vision system capable of analyzing such activities would revolutionize the rehabilitative
process, allowing for long-term, at-home monitoring.
Life-logging: It aids in continual logging of visual personal histories for memory enhancement
for patients with memory-loss.

1



3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is comprised of one or more convolutional layers (often
with a subsampling step) and then followed by one or more fully connected layers as in a standard
multilayer neural network. The architecture of a CNN is designed to take advantage of the 2D
structure of an input image (or other 2D input such as a speech signal). This is achieved with
local connections and tied weights followed by some form of pooling which results in translation
invariant features. Another benefit of CNNs is that they are easier to train and have many fewer
parameters than fully connected networks with the same number of hidden units.

3.1 Architecture

A CNN consists of a number of convolutional and subsampling layers optionally followed by fully
connected layers. The input to a convolutional layer is a m x m x r image where m is the height
and width of the image and r is the number of channels, e.g. an RGB image has r=3. The
convolutional layer will have k filters (or kernels) of size n x n x q where n is smaller than the
dimension of the image and q can either be the same as the number of channels r or smaller and
may vary for each kernel. The size of the filters gives rise to the locally connected structure which
are each convolved with the image to produce k feature maps of size m–n+1. Each map is then
subsampled typically with mean or max pooling over p x p contiguous regions where p ranges
between 2 for small images (e.g. MNIST) and is usually not more than 5 for larger inputs. Either
before or after the subsampling layer an additive bias and sigmoidal nonlinearity is applied to each
feature map. The figure below illustrates a full layer in a CNN consisting of convolutional and
subsampling sub-layers. Units of the same color have tied weights.

Figure 1: First layer of a convolutional neural network with pooling. Units of the same color have
tied weights and units of different color represent different filter maps.

We have used the CNN architecture AlexNet the details of which are described as follows.
The first convolutional layer filters the 224 x 224 x 3 input image with 96 kernels of size 11 x 11

x 3 with a stride of 4 pixels (this is the distance between the receptive field centers of neighboring
neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 x 5 x

2



48. The third, fourth, and fifth convolutional layers are connected to one another without any
intervening pooling or normalization layers. The third convolutional layer has 384 kernels of size
3 x 3 x 256 connected to the (normalized, pooled) outputs of the second convolutional layer. The
fourth convolutional layer has 384 kernels of size 3 x 3 x 192 and the fifth convolutional layer has
256 kernels of size 3 x 3 x 192. The fully-connected layers have 4096 neurons each.

Figure 2: AlexNet Architecture

4 Training of Object Recognition Model

The AlexNet CNN pre-trained on ImageNet dataset which contains about 1.2 million natural
scene images because the generic image features learned till fc7.The fc7 features are reused so as
to avoid overfitting due to less amount of training data than required for training the CNN on
video objects from scratch. A 1000 neuron softmax layer is replaced by 27 unit softmax (26 object
categories + background) layer corresponding to our problem and then fine tuning is done using
the object proposals extracted for 10000 iterations.

4.1 Training Data for Fine-tuning CNN

Region proposals of different objects in a frame of video are generated using Selective Search
Technique. Around 2000 proposals per frame are generated most of which are negatives (do not
correspond to real objects). A few proposals (around 10 per frame) are positive proposals having
IoU (intersection over Union) overlap ratio with ground truth annotations ≥ 0.5. The training is
performed on about 28k images consisting of batches of 140 consisting of 130 positive proposals
and 10 negative proposals. The positive proposals are entirely used while a random sampling
is performed to select the negative proposals. The batch size proportion is set such that each
object class including the background has roughly same number of training examples. Using all
background proposals leads to the object recognition model being more biased towards predicting
negatives.

3



5 Temporal Pyramids based Approach

• Bag of Features representation simply averages features corresponding to each frame ignoring
temporal information.

• We represent features in a temporal pyramid, where the top level j = 0 is a histogram over
the full temporal extent of a video clip , the next level is the concatenation of two histograms
obtained by temporally segmenting the video into two halfs, and so on.

• A coarse-to-fine representation is obtained by concatenating all such histograms together.

xj,ki =
2j−1

T

∑
t∈T j,k

f t
i ∀ k ∈ {1...2j}

where T j,k is the temporal extent of the kth segment on the jth level of the pyramid and xj,ki
is the feature for the ith object detector on that segment.

• The features corresponding to the active objects are biased by a threshold greater than
passive objects as they are more likely to represent the prominent objects in the video
frame.

• A two-level temporal pyramid is constructed in which at each level, the frames corresponding
to the span of the corresponding level segment are averaged.

• For each activity the feature vectors of different segments are concatenated to obtain the
feature vector.

• A linear kernel SVM is used to classify the remaining 14 videos (object detection is trained
on first 6 videos only).

6 Activity Classification using LSTMs

Recently Long Short Term Memory(LSTM) units have been widely successful in modelling se-
quence based information both in input and output.

Recurrent Neural Networks(RNNs) can learn complex temporal dynamics by mapping input
sequences to a sequence of hidden states, and hidden states to outputs via the following recurrence
equations.

ht = g(Wxhxt +Whhht−1 + bh)

zt = g(Whzht + bz)

where g is an element-wise non-linearity, such as a sigmoid or hyperbolic tangent, xt is the
input, ht ∈ RN is the hidden state with N hidden units, and yt is the output at time t. For a
length T input sequence x1, x2, ..., xT , the updates above are computed sequentially as h1 (letting
h0 = 0),y1, h2, y2, ..., hT , yT .

In addition to a hidden unit ht ∈ RN , the LSTM includes an input gate it ∈ RN , forget gate
ft ∈ RN , output gate ot ∈ RN , input modulation gate gt ∈ RN , and memory cell ct ∈ RN . The
memory cell unit ct is a summation of two things: the previous memory cell unit ct−1 which is
modulated by ft, and gt, a function of the current input and previous hidden state, modulated by

4



the input gate it. it and ft can be thought of as knobs that the LSTM learns to selectively forget
its previous memory or consider its current input. Likewise, the output gate ot learns how much
of the memory cell to transfer to the hidden state. These additional cells enable the LSTM to
learn extremely complex and long-term temporal dynamics the RNN is not capable of learning.
Additional depth can be added to LSTMs by stacking them on top of each other, using the hidden
state of the LSTM in layer l − 1 as the input to the LSTM in layer l.

The LSTM updates for timestep t given inputs xt, ht−1, and ct−1 are:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

gt = σ(Wxcxt +Whcht−1 + bc)

ct = ft � ct−1 + it � gt
ht = ot � ϕ(ct)

Figure 3: A single LSTM cell

6.1 LSTM Architecture

The architecture consists of a single layer LSTM with 256 hidden units followed by two fully
connected non-recurrent layers of size 256 and 18 respectively followed by 18 dimensional softmax
layer. The input to LSTM is a 26- dimensional vector for each frame and output is 18 dimensional
vector representing the Negative log likelihood of the frame belonging to each of 18 video categories.
The predictions corresponding to each frame are averaged to obtain a vector used for predicting
the class of activity.

5



Figure 4: LSTM architecture for classification

6.2 Experiments on LSTM Classification Model

We tried with different number of hidden units for each layer in LSTM based model(64,256,512)
and found best results with the 256 units model. Another variation is to take average of confidence
scores at each frame instead of last frame.The averaging approach yields better results. Non-
uniform distribution of different activities causes the model to be biased towards more frequently
occurring activities.Also, the training data is insufficient compared to the large number of model
parameters.In order to overcome these limitations, we divided each segments into sub-segments of
5 seconds duration each. Then we sample a number uniformly ranging from half of total number of
segments and total number of segments and take these number of segments in topological ordering
for training.The number of times sampling is done is in inverse proportion to the frequency of
occurrence of that activity category.Thus, it results in a approximately uniform distribution of all
activities.This gives encouraging results than the previous approach and further work is ongoing
to improve the classification accuracy.

Table 1: Activity classification accuracy with 2 layer LSTM with 512 units in each layer
No. of Iterations Training Set Accuracy Validation Set Accuracy
10 13.64 21.18
20 21.18 18.72
30 22.72 15.27
40 27.27 15.27
50 31.82 15.27
60 31.82 13.79

6



Table 2: Activity classification accuracy with 2 layer LSTM with 256 units in each layer
No. of Iterations Training set Accuracy Validation set Accuracy
10 13.64 12.80
20 20.0 20.69
30 22.72 17.24
40 21.82 15.27

Table 3: Activity classification accuracy with 2 layer LSTM with 64 units in each layer

No. of Iterations Training set Accuracy Validation set Accuracy
10 13.63 12.32
20 13.63 12.32
30 13.63 12.32
40 13.63 12.32

Table 4: Activity classification accuracy with 2 layer LSTM with 256 units in each layer and
averaging approach

No. of Iterations Training Accuracy Validation Accuracy
40 14.54 12.80
50 15.45 14.77
54 17.27 15.76
56 18.18 16.26
58 17.27 17.73
60 16.36 19.70
64 16.36 23.15
68 18.18 23.64
70 19.09 24.14
72 18.18 24.13
76 19.09 22.66
80 19.09 21.67

7



7 Results

7.1 Results for Object Detection Model

Figure 5: Confusion Matrix for Object classification on 26 objects + background using AlexNet
CNN. Object Classification Accuracy = 44 %

• The AlexNet CNN model results in a 44 % object detection accuracy on the validation set.

• We get a 27- dimensional vector(26 object categories, 1 background) representing the confi-
dence scores of the input proposal for each of object categories.

• For each frames, in order to obtain the confidence score for each object category, we took
the absolute maximum among all proposals of that frame for each object category.

• The max 27-dim vector acts as a feature for each frame.

8



Table 5: Object categories for Egocentric videos
Object ID Object Name
1 Fridge (Active)
2 Microwave (Active)
3 Mug/cup (Active)
4 Oven/Stove (Active)
5 Soap Liquid(Active)
6 Bed
7 Book
8 Bottle
9 Cell
10 Dental Floss
11 Detergent
12 Dish
13 Door
14 Fridge
15 Kettle
16 Laptop
17 Microwave
18 Monitor
19 Pan
20 Pitcher
21 Soap Liquid
22 Tap
23 Tea bag
24 Toothpaste
25 TV
26 TV remote
27 Background

9



7.2 Results for Activity Classification using Temporal Pyramids

The temporal Pyramid based feature in SVM gives 44.03 % accuracy which is better than the
current state of the art(36.8 %) on the same dataset.

Figure 6: Confusion matrix for Temporal pyramid based video descriptors. Segment classification
accuracy = 44.03 %

Table 6: Activity Categories in Egocentric Videos
Activity ID Activity description
1 combing hair
2 make up
3 brushing teeth
4 dental floss
5 washing hands/face
6 drying hands/face
7 laundry
8 washing dishes
9 making tea
10 making coffee
11 drinking water/bottle
12 drinking water/tap
13 making cold food/snack
14 vaccuming
15 watching tv
16 using computer
17 using cell
18 reading book

10



7.3 Results for Activity Classification using LSTM architecture

Using the LSTM based approach, the maximum accuracy found so far is 24.14 %. using 2 layer
LSTM architecture with 256 hidden units in each layer and use of averaging approach to make
predictions. The low accuracy is attributed to the vanishing gradient problem in extremely long
temporal frame sequences. Further research is needed to make this architecture perform better.

11


