

Texas Instruments Innovation Challenge

India Design Contest 2015

PAGE 1 - SELF ASSESSMENT

1. “We, authors of the report entitled Reading Assistance For Blind/Low-Vision People confirm that this report
has not been submitted to any other forum such as another contest or conference for publication. We hereby
state that we will not submit the same work for any other contest in the future. We understand that Texas
Instruments has the right to use this report in its conferences/publications. We will seek TI’s permission before
we submit the report for publication in an external forum.”

2. Our idea is not completely original. Previous attemps at making reading assists for blind people have been
made. We mainly derived inspiration from the products that use character recognition to read aloud the pages
of a book and also the fact that the Braille system of reading is very cumbersome and expensive. A reference
is MIT Media Lab’s “FingerReader”

3. Professor Goutam Das, our mentor helped us during any obstacle that we faced in this whole process. Mr.
Rajesh Kedia, a former TI employee, helped us get familiar with the dev boards. The seniors who have
participated in the contest in the previous years also aided a lot and guided us. Lastly, the online blogs on TI
parts electronics, software, open source etc. also proved to be of great help.

4. We faced a problem with the webcam used for this project to take the snapshots of the pages in the book as the
beaglebone black didn’t have the required amount of video memory available. After taking one or two photos
using the webcam the usb controller being out of memory was failing to initialize the device to take another
snap. So, we used our laptop instead to handle the webcam and the beaglebone copies the image from our
laptop using an ssh connection.

We faced another problem with the image taken by the webcam. The OCR program (Tesseract) was facing
problem reading the image file as in most of the cases it was tilted and and text near the edges of the pages
were blurred. 2D prespective correction using OpenCV was employed to make the camera image fit for OCR.

5. There is no proper place to work during late hours as all the labs are closed after 5’o clock and the electronics
hobby hub which is the only place open during all the hours didn’t had many facilities like oscilloscope with the
functionality of FFT. Also this laboratory only had 4 keys available which made it even more difficult for all the
teams to work whenever the time was appropriate.

6. No, we didn’t use WEBENCH to design power supply or filter our project.

7. TI India Analog Design Contest helped us learn about using the beaglebone environment for integrating various
software aspects of project such as OCR,text-to-speech conversion, communication between PC, beaglebone
and launch pad.It gave us opportunity to make a real-time embedded-cum-software project.

8. Movable Camera Stand: The current camera stand is fixed, thus limiting the usage of camera to a single side

of the book only. A movable stand will make the product more usable and efficient.
Dictionary Support of Tesseract: The library ‘Tesseract’ used for OCR just identifies the characters. Better
prediction would be possible if the predicted word is matched for a possible word in the dictionary. This will
further increase the efficiency of the OCR
Output of Sound Card: The output of the speakers are low beause of the quality of the sound generated is
poor. A better sound quality output will make the hearing process easier. Even a volume control module can be
used for great user interface

9. Please tick all aspects of your project that you believe are now complete.

Paper design of hardware Algorithm/software design

Hardware implementation on breadboard

System-levell testing with examples

Hardware implementation on PCB

Benchmarking/Performance Analysis

Hardware Testing

Short Video on Project
Youtube video link :
http://youtu.be/QZlMIZKv6Ws

http://youtu.be/QZlMIZKv6Ws

Reading Assistance for Blind/Low-Vision People

Ajay Agarwal, Aranya Goswami, Bishal Santra, Soumya Sanyal, Vardaan Pahuja

Prof. Goutam Das
Indian Institute of Technology, Kharagpur

West Midnapore, West Bengal
ajayagarwal1995@gmail.com

Abstract—
The project addresses the basic problem of reading faced by blind and low-vision people. Our prototype is basically a text-to-

speech converter. It takes the image of a page using a camera and this image is processed and read out aloud. The prototype also
includes a mechanism for the turning of the pages of the book. People with retarded vision either have to resort to hearing or using
Braille characters in order to read anything; listening being the obvious convenient option. The product thus caters to the basic
recreational and developmental need of reading of visually impaired people who constitute a substantial section of the society.

I. INTRODUCTION

A. Technical Background

The aim of project is to do Optical Character Recognition (OCR), feed the text to a text to speech converter and play the
audio through a DAC (Digital-to-Analog) converter.
The salient features of a similar product are available at :
https://www.enhancedvision.com/downloads/brochure/DaVinci-Flyer.pdf
Our solution is not as a full-fledged commercial product due to limited resource availability but accomplishes the basic task as
efficiently as the state-of-art with added advantage of being inexpensive.

II. PROPOSED SOLUTION

The proposed solution is to integrate a webcam with a microcontroller which
can do Optical Character Recognition of the input image from the webcam.
For this the webcam is used to capture an image of the page to be read out.
This image is then fed to a laptop using USB port for image processing using
OpenCV library. In image processing the edges are properly detected,
grayscale version of the image is formed and 3-D perspective mapping of the
image is done to make the image appear perfectly flat. This image is then
give to Beaglebone Black for Optical Character Recognition using Tesseract.
The output of the OCR is a text file containing the words of the decoded
image. This is fed to a text to speech converter (festival) which generates a
.wav file corresponding to the given text input. This .wav file is played using
a sound card through a speaker. Then once the sound is completely played,
the the beagle bone sends an interrupt call to the MSP430 launchpad which is
interfaced to control the motors of the page turning mechanism. First a motor

https://www.enhancedvision.com/downloads/brochure/DaVinci-Flyer.pdf

rotates a wheel for very short duration which raises the page a bit. Then another motor rotates a stick in circular motion to turn the
page. In this way the next page is available for decoding. this process is continued.

III IMPLEMENTATION

A. Hardware Implementation

The hardware implementation includes page turner mechanism which includes a small wheel whose rim lifts the page and a
rotating shaft which turns the page over.The motors used are simple DC motors controlled with L293 driver.When OCR and audio
output of text generated is complete, an interrupt is sent by beaglebone to Tiva MSP430 launch pad which signals the motor driver
to rotate the motors for a specified duration to accomplish the specified task.

B. Software Implementation

Pseudo code for OCR pre-processing:
1. Convert image to grayscale.
2. Binarise a copy of image and perform contour detection to find contour of largest area. This corresponds to the page of

book.
3. Perform OR operation of inverted binary image with grayscale image to eliminate background of page.
4. Perform Harris corner detection to find corners in each quadrant. These four points are corners of page.
5. Do perspective correction using the 4 points obtained earlier and map them to a rectangle of size of original image.
6. The output of perspective correction is fed to Tesseract for OCR.
7. The text file generated by the tesseract is fed to the Festival for text-to-wav file conversion.

IV. RESULTS

The image was properly taken and processed using OpenCV. Tesseract OCR gave fairly satisfactory results. The festival software
also gave proper sound outputs. The integration of laptop and sound card with Beaglebone Black was also successfully achieved.
The output sound was fairly good and audible. The page turner worked as expected. Overall, the outcomes were desirable with
scope of further changes at some places.

V. CONCLUSIONS

Our aim was to make a fully automated prototype for reading books using character recognition. Due to physical memory
limitations of the beaglebone, we had to use the laptop for our assistance which limited the automation of our prototype. We were
successful in reading aloud the pages and implementing the page turning mechanism. The OCR engine gets better with time as it
self-trains itself. The future scope of this project is very widespread. The whole project can be developed into an ASIC which would
be of very low cost when manufactured on a large scale.

ACKNOWLEDGMENTS

We sincerely thank the following people for their support without which the project would not have been compelte:
Professor Goutam Das, Department of Electronics and Electrical Communication Engineering, IIT Kharagpur
Mr. Rajesh Kedia, former TI employee
The seniors of our institute who previously participated in TI ADC

REFERENCES

[1] A.N. Author. Title of the paper. Journal of Innovation. Vol 3, No. 2. 2011.
[2] M.Y. Favorite Author. Title of the paper. Available from Internet. URL. 2013.
[3] A.N. Other Author et al. Title of their paper. Conference Title. 2012

APPENDIX B : CODES

/*Code for Motot Control

int pwmpin = 4;
int pwmpin1 = 9;
volatile int state = LOW;
void setup()
{
 pinMode(GREEN_LED, OUTPUT);
 pinMode(pwmpin, OUTPUT);
 pinMode(pwmpin1, OUTPUT);
 digitalWrite(GREEN_LED, HIGH);
 /* Enable internal pullup.
 * Without the pin will float and the example will not work */
 pinMode(PUSH2, INPUT_PULLUP);
 attachInterrupt(PUSH2, blink, FALLING); // Interrupt is fired whenever beagle gives a pulse

void loop()
{
 digitalWrite(GREEN_LED, HIGH); //LED starts ON
 if(state == HIGH)
 {
 analogWrite(pwmpin, 200); //start the top motor
 analogWrite(pwmpin1, 0);
 delay(400);
 analogWrite(pwmpin1, 255); //start the bottom motor
 analogWrite(pwmpin, 0);
 delay(4000); //calibrated delays

 state = LOW;
 }
 if(state == LOW)
 {
 analogWrite(pwmpin, 0); // stop both motors
 analogWrite(pwmpin1, 0);
 }
}
void blink()
{
 state = HIGH;
}
/* CODE FOR AUTOMATION OF THE WHOLE PROCESS*/

#include <stdio.h>
#include <stdlib.h>

#define NUM_COMMANDS 8
typedef char* string;
int main()
{
//string fileName[2] = {"send1.jpg","send2.jpg"};
string paths[3] = {"/sys/class/gpio/","gpio60","/root/"};
string commands[] = {
"sshpass -p '123456' scp bishal@192.168.7.1:~/Desktop/send1.jpg /root/",
"tesseract send1.jpg out",
"text2wave out.txt -o play.wav",
 //"display send1.jpg",
"ffmpeg -i play.wav -f alsa 'default:CARD=Device' -re -vol 200",
"echo out > direction",
“echo 0 > value",
"echo 1 > value",
"echo 0 > value"};
int i,j;
for(i=0;i<4;i++)
{
 system(commands[i]);
}
chdir(paths[0]);
system("echo 60 > export");
chdir(paths[1]);

for(i=4;i<NUM_COMMANDS;i++)
{
system(commands[i]);
}
chdir("/root");

 commands[0] = "sshpass -p '123456' scp bishal@192.168.7.1:~/Desktop/send2.jpg /root/";
 commands[1] = "tesseract send2.jpg out";

for(i=0;i<4;i++)
 {
 system(commands[i]);
 }
chdir(paths[0]);
 system("echo 60 > export");
 chdir(paths[1]);

 //for(j=0;j<10;j++)
 {
 for(i=4;i<NUM_COMMANDS;i++)
 {
 system(commands[i]);
 }
 //sleep(1);
 }
 chdir("/root");
return 0;
}

OpenCV OCR Preprocessing code:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <vector>
#include <stdio.h>
#include<math.h>

using namespace cv;
using namespace std;

int main()
{
 Mat img,gray_img,img_bin,kernel;
 img=imread("p1.jpg");
 resize(img,img,Size(img.cols/4,img.rows/4));
 //resize(img,img,Size(0,0),0.85,0.85);
 cvtColor(img,gray_img,CV_BGR2GRAY);
 threshold(gray_img, img_bin,150.0, 255.0, THRESH_BINARY_INV|THRESH_OTSU);
 kernel = getStructuringElement(MORPH_ELLIPSE, Size(1, 1));
 bitwise_not(img_bin,img_bin);

 vector<vector<Point> > contours,contours2;

 vector<Vec4i> hierarchy,hierarchy2;
 vector<int> small_blobs,small_blob2;
 double contour_area;
 Mat temp_image;
 double threshold=img.rows*img.cols/2;

 // find all contours in the binary image
 img_bin.copyTo(temp_image);
 findContours(temp_image, contours, hierarchy,
CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE);

 // Find indices of contours whose area is less than `threshold`
 if (!contours.empty()) {
 for (size_t i=0; i<contours.size(); ++i) {
 contour_area = contourArea(contours[i]) ;
 if (contour_area > threshold)
 small_blobs.push_back(i);
 }
 }

 // fill-in all small contours with zeros
 for (size_t i=0; i < small_blobs.size(); ++i) {
 drawContours(temp_image, contours, small_blobs[i], cv::Scalar(255),CV_FILLED, 8);
 }
 Mat new_img=Mat(img.rows,img.cols,CV_8U,Scalar(0,0,0));
 Mat out_img=Mat(img.rows,img.cols,CV_8U,Scalar(0,0,0));

 bitwise_not(temp_image,temp_image);

 for(int i=0;i<img.rows;i++)
 {
 for(int j=0;j<img.cols;j++)
 {
 new_img.at<uchar>(i,j)=temp_image.at<uchar>(i,j)+gray_img.at<uchar>(i,j);
 }
 }
 //bitwise_not(new_img,new_img);

 Mat dst, dst_norm, dst_norm_scaled;
 dst = Mat::zeros(img_bin.size(), CV_32FC1);
 int blockSize = 7;
 int apertureSize = 5;
 double k = 0.04;
 int thresh=100;
 /// Detecting corners
 medianBlur (temp_image,temp_image,3);

 cornerHarris(temp_image, dst, blockSize, apertureSize, k, BORDER_DEFAULT);

 /// Normalizing
 normalize(dst, dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat());
 convertScaleAbs(dst_norm, dst_norm_scaled);

 /// Drawing a circle around corners

Point p1,p2,p3,p4;

//if(dst_norm.at<float>(0,0)>dst_norm.at<float>(0,1) &&)
 p1=Point(0,0);
 for(int j = 0; j < dst_norm.rows/2 ; j++)
 {
 for(int i = 0; i < dst_norm.cols/2; i++)
 {
 if(dst_norm.at<float>(j,i) > dst_norm.at<float>(p1.y,p1.x))
 p1=Point(i,j);
 }
 }

p2=Point(dst_norm.cols/2,0);
for(int j = 0; j < dst_norm.rows/2 ; j++)
 {
 for(int i = dst_norm.cols/2 ; i < dst_norm.cols; i++)
 {
 if(dst_norm.at<float>(j,i) > dst_norm.at<float>(p2.y,p2.x))
 p2=Point(i,j);
 }
 }

p3=Point(0,dst_norm.rows/2);
 for(int j = dst_norm.rows/2; j < dst_norm.rows ; j++)
 {
 for(int i = 0; i < dst_norm.cols/2; i++)
 {
 if(dst_norm.at<float>(j,i) > dst_norm.at<float>(p3.y,p3.x))
 p3=Point(i,j);
 }
 }

p4=Point(dst_norm.cols/2,dst_norm.rows/2);
 for(int j = dst_norm.rows/2; j < dst_norm.rows ; j++)
 {
 for(int i = dst_norm.cols/2; i < dst_norm.cols; i++)
 {
 if(dst_norm.at<float>(j,i) > dst_norm.at<float>(p4.y,p4.x))

 p4=Point(i,j);
 }
 }
cout<<"p1= "<<p1.x<<" "<<p1.y<<endl;
cout<<"p2= "<<p2.x<<" "<<p2.y<<endl;
cout<<"p3= "<<p3.x<<" "<<p3.y<<endl;
cout<<"p4= "<<p4.x<<" "<<p4.y<<endl;

circle(dst_norm_scaled, p1, 15, Scalar(255), 2, 8, 0);
circle(dst_norm_scaled, p2, 15, Scalar(255), 2, 8, 0);
circle(dst_norm_scaled, p3, 15, Scalar(255), 2, 8, 0);
circle(dst_norm_scaled, p4, 15, Scalar(255), 2, 8, 0);
 //medianBlur (new_img,new_img,1);
 /*
 Mat p3=imread("p3.jpg");
 Mat p4=Mat(p3.rows,p3.cols,CV_8UC3);

 Mat mmat = Mat(3,3,CV_32FC1);
 //Point2f c1[4] = (Point2f(80,200),Point2f(552,80),Point2f(200,756),Point2f(552,756));
 //Point2f c2[4] = (Point2f(0,0),Point2f(img.cols,0),Point2f(0,img.rows),Point2f(img.cols,img.rows));

 Point2f c1[4] = (Point2f(43,18),Point2f(280,40),Point2f(19,223),Point2f(304,200));
 Point2f c2[4] = (Point2f(0,0),Point2f(320,0),Point2f(0,240),Point2f(320,240));

 mmat = getPerspectiveTransform(c1, c2);
 warpPerspective(p3, p4, mmat,Size(p3.cols,p3.rows));
*/ // Input Quadilateral or Image plane coordinates
 Point2f inputQuad[4];
 // Output Quadilateral or World plane coordinates
 Point2f outputQuad[4];

 Mat lambda = Mat::zeros(new_img.rows, new_img.cols, new_img.type());
/*
 inputQuad[0] = Point2f(200,80);
 inputQuad[1] = Point2f(new_img.cols-60,80);
 inputQuad[2] = Point2f(new_img.cols-60,new_img.rows-60);
 inputQuad[3] = Point2f(200,new_img.rows-60);
 // The 4 points where the mapping is to be done , from top-left in clockwise order
 outputQuad[0] = Point2f(0,0);
 outputQuad[1] = Point2f(new_img.cols-1,0);
 outputQuad[2] = Point2f(new_img.cols-1,new_img.rows-1);
 outputQuad[3] = Point2f(0,new_img.rows-1);
*/
 cout<<"a= "<<a<<"b= "<<b<<"c= "<<c<<"d= "<<d<<endl;
/*
 inputQuad[0] = Point2f(b,a);
 inputQuad[1] = Point2f(c,a);
 inputQuad[2] = Point2f(c,d);

 inputQuad[3] = Point2f(b,d);
*/
 inputQuad[0] = Point2f(p1.x,p1.y);
 inputQuad[1] = Point2f(p2.x,p2.y);
 inputQuad[2] = Point2f(p4.x,p4.y);
 inputQuad[3] = Point2f(p3.x,p3.y);
 // The 4 points where the mapping is to be done , from top-left in clockwise order
 outputQuad[0] = Point2f(0,0);
 outputQuad[1] = Point2f(new_img.cols-1,0);
 outputQuad[2] = Point2f(new_img.cols-1,new_img.rows-1);
 outputQuad[3] = Point2f(0,new_img.rows-1);
 // Get the Perspective Transform Matrix i.e. lambda
 lambda = getPerspectiveTransform(inputQuad, outputQuad);
 // Apply the Perspective Transform just found to the src image
 warpPerspective(new_img,out_img,lambda,out_img.size());

 cout<<"rows= "<<img.rows<<" cols= "<<img.cols<<endl;

 cvNamedWindow("win3");
 imshow("win3",dst_norm_scaled);

 cvNamedWindow("win4");
 imshow("win4",temp_image);

 cvNamedWindow("win1");
 imshow("win1",out_img);
 imwrite("abc.jpg",out_img);

 cvNamedWindow("win2");
 imshow("win2",new_img);

 cvWaitKey(0);

 return 0;
}

APPENDIX C – BILL OF MATERIALS

 Component Manufacturer Cost per
component

Quantity Total cost of
component

TI Supplied/ Purchased

1 Beaglebone
Black

Element 14 45$ 1 45$ TI Supplied

2 MSP-
EXP430G2

TI 9.99$ 1 9.99$ TI Supplied

3 Quantum
QHM-
500LM

Webcam

Quantum 8$ 1 8$ Purchased

4 USB Audio
Adapter

 2$ 1 2$ Purchased

5 Motors 2$ 2 4$ Purchased

6 Speakers Zebronics 6$ 1 6$ Purchased

7 Miscellane
ous

(Wires,
battery,

breadboar
d etc.)

 5$ 5$ Purchased

 Total Cost of the Project (approx.) 80$

