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Motivation
• Advantages of disentangled representations

➔ Superior out-of-domain (OOD) generalization
➔ Better interpretability
➔ Better sample efficiency
➔ Better transfer learning capabilities

• Use a diversity-enforcing loss to encourage disentangled
representations.

Background
• Tokenlearner

– Adaptively learn a fixed set of token representations
across one or more modalities.

– Select a series of informative combinations of spatial
locations in the image conditioned on all modalities.

– For the ith token zi, it learns a spatial attention map
αi(X) which is multiplied with the input X to gener-
ate a token output Ai(X),

zi = Ai(X) = ρ(X ⊙ γ(αi(X)))

• Co-tokenization
– Cross-modality interaction during the visual feature

extraction process by learning token representa-
tions, rather than rather considering them as an af-
terthought after feature extraction.

– Multiple streams of video at different spatio-temporal
scales for multimodal representation learning.

Overall VideoQA Results
Model MSRVTT-QA MSVD-QA GFLOPs

Co-tokenization 33.7 32.5 67
Ours 33.1 30.1 41

Table 1: Comparison to state-of-the-art approaches for VideoQA (open-
vocabulary). We pretrain on 10% subset of the HowTo69MVQA dataset,
whereas Co-tokenization pretrained on the full HowTo100M dataset.
We demonstrate competitive performance despite having a smaller
model capacity.

Proposed Approach
• Add diveristy loss as an auxiliary objective.
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Overall VQA Results

Model GQA SNLI-VE

SimVLM (Huge) – 86.32

UNITER – 79.38
VinVL 65.05 –
LXMERT 60.0 –

Ours 76.79 80.15

Table 2: Comparison to state-of-the-art approaches (VQA)

VideoQA Results
Dataset Pre-training Model Accuracy

MSRVTT-QA

Baseline 31.06
Ours 31.37

✓
Baseline 31.78

Ours 33.05

MSVD-QA

Baseline 27.98
Ours 28.22

✓
Baseline 28.08

Ours 30.11

IVQA

Baseline 9.48
Ours 9.96

✓
Baseline 8.86

Ours 9.97

Table 3: Video QA results in the open vocabulary setting (val. set). The
baseline is a similar capacity Co-tokenization model.

VQA Results
Val. set Test set

Dataset Model E.M. F1 E.M. F1

SNLI-VE Baseline 76.70 76.70 76.59 76.59
Ours 78.06 78.06 77.36 77.37

GQA Baseline 73.48 73.56 73.5 73.57
Ours 75.02 75.11 75.01 75.1

Table 4: VQA results in the pre-training setting.

Val. set Test set

Dataset Model E.M. F1 E.M. F1

SNLI-VE Baseline 73.08 73.08 72.5 72.5
Ours 73.15 73.15 72.69 72.69

GQA Baseline 68.08 68.13 68.14 68.2
Ours 67.98 68.02 67.98 68.02

Table 5: VQA results in the no pre-training setting.

Visualizations
• Localize attention to salient areas of the image, that are vi-

tal for answering the question.

and while our models perform well, they do not outperform
particularly large models.

Val. set Test set

Dataset Model E.M. F1 E.M. F1

SNLI-VE Baseline 76.70 76.70 76.59 76.59
Ours 78.06 78.06 77.36 77.37

GQA Baseline 73.48 73.56 73.5 73.57
Ours 75.02 75.11 75.01 75.1

Table 3. VQA results in the pre-training setting.

Val. set Test set

Dataset Model E.M. F1 E.M. F1

SNLI-VE Baseline 73.08 73.08 72.5 72.5
Ours 73.15 73.15 72.69 72.69

GQA Baseline 68.08 68.13 68.14 68.2
Ours 67.98 68.02 67.98 68.02

Table 4. VQA results in the no pre-training setting.

Model GQA SNLI-VE

SimVLM (Huge) [29] – 86.32

UNITER [6] – 79.38
VinVL [37] 65.05 –
LXMERT [26] 60.0 –

Ours 76.79 80.15

Table 5. Comparison to state-of-the-art approaches (test-dev set
for GQA and test set for SNLI-VE). Missing values are denoted
by –. Our model uses a 3M dataset for pre-training and has about
300M parameters. Approaches which use much larger data or
model are shown in the top section.

4.4. Visualization

Figure 3 visualizes the learned disentangled represen-
tations, along with their corresponding attention maps for
a VQA example. We observe that they localize their at-
tention to much more specific areas of the image, that are
vital for answering the question. Furthermore, the tokens
that are selected prioritize joint visual-language represen-
tation, thereby capturing essential features from both the
visual and linguistic inputs. Additional visualizations are
shown in Section A in the Appendix.

5. Conclusion
In this work, we propose learning disentangled repre-

sentations for the learned tokens in Transformer models

(a) Question Image

(b) Token visualization (Baseline)

(c) Token visualization (Ours)

Figure 3. (a) Question: what kind of climbing vine or plant is this?
Baseline: tombppry, Ours: ivy, Ground truth answers = [‘fern’,
‘grape’, ‘vine’, ‘ivy’, ‘unanswerable’, ‘creeping fig’, ‘unanswer-
able’, ‘unanswerable’, ‘ivy’, ‘green’]; Bottom left: Weights as-
signed to each image patch for every token, lighter shades like
yellow correspond to higher weights; Bottom right: Token atten-
tion masks grounded to the input image.

for VQA and VideoQA tasks. This simple-yet-effective
approach leads to a performance boost in a majority of
training settings across datasets. Future work will involve
benchmarking this approach with higher capacity models
and more pre-training for improved performance. Another
promising future direction is to utilize the learned token rep-
resentations for related downstream tasks.

Figure 1: (a) Question: what kind of climbing vine or plant is this? Base-
line: tombppry, Ours: ivy, Ground truth answers = [‘fern’, ‘grape’, ‘vine’,
‘ivy’, ‘unanswerable’, ‘creeping fig’, ‘unanswerable’, ‘unanswerable’,
‘ivy’, ‘green’]; Bottom left: Weights assigned to each image patch for
every token, lighter shades like yellow correspond to higher weights;
Bottom right: Token attention masks grounded to the input image.


