

Motivation

• Advantages of disentangled representations

- → Superior out-of-domain (OOD) generalization
- → Better interpretability
- → Better sample efficiency
- → Better transfer learning capabilities
- Use a diversity-enforcing loss to encourage disentangled representations.

Background

- Tokenlearner
 - Adaptively learn a fixed set of token representations across one or more modalities.
 - Select a series of informative combinations of spatial locations in the image conditioned on all modalities.
 - For the i^{th} token z_i , it learns a spatial attention map $\alpha_i(X)$ which is multiplied with the input X to generate a token output $A_i(X)$,

$$z_i = A_i(X) = \rho(X \odot \gamma(\alpha_i(X)))$$

Co-tokenization

- Cross-modality interaction during the visual feature extraction process by learning token representations, rather than rather considering them as an afterthought after feature extraction.
- Multiple streams of video at different spatio-temporal scales for multimodal representation learning.

Overall VideoQA Results

Model	MSRVTT-QA	MSVD-QA	GFLOPs
Co-tokenization	33.7	32.5	67
Ours	33.1	30.1	41

Table 1: Comparison to state-of-the-art approaches for VideoQA (open
 vocabulary). We pretrain on 10% subset of the HowTo69MVQA dataset, whereas Co-tokenization pretrained on the full HowTo100M dataset. We demonstrate competitive performance despite having a smaller model capacity.

Diversifying Joint Vision-Language Tokenization Learning

*Work done while at Google

Overall VQA Results

Model	GQA	SNLI-VE
SimVLM (Huge)	_	86.32
UNITER	_	79.38
VinVL	65.05	
LXMERT	60.0	
Ours	76.79	80.15

Table 2: Comparison to state-of-the-art approaches (VQA)

Vardaan Pahuja¹*, AJ Piergiovanni², Anelia Angelova² ¹The Ohio State University ²Google DeepMind

VideoQA Results

Dataset	Pre-training	Model	Accuracy
		Baseline	31.06
		Ours	31.37
MSRVTT-QA		Baseline	31.78
		Ours	33.05
		Baseline	27.98
		Ours	28.22
MSVD-QA		Baseline	28.08
		Ours	30.11
		Baseline	9.48
		Ours	9.96
IVQA		Baseline	8.86
		Ours	9.97

Table 3: Video QA results in the open vocabulary setting (val. set). The baseline is a similar capacity Co-tokenization model.

VQA Results

		Val. set		Test set	
Dataset	Model	E.M.	F1	E.M.	F1
SNLI-VE	Baseline	76.70	76.70	76.59	76.59
	Ours	78.06	78.06	77.36	77.37
GQA	Baseline	73.48	73.56	73.5	73.57
	Ours	75.02	75.11	75.01	75.1

Table 4: VQA results in the pre-training setting.

		Val. set		Test set	
Dataset	Model	E.M.	F1	E.M.	F1
SNLI-VE	Baseline Ours	73.08 73.15	73.08 73.15	72.5 72.69	72.5 72.69
GQA	Baseline Ours	68.08 67.98	68.13 68.02	68.14 67.98	68.2 68.02

Table 5: VQA results in the no pre-training setting.

Visualizations

• Localize attention to salient areas of the image, that are vital for answering the question.

(a) Question Image

-		•		BK.	97. I		55
				BX.	SK.	BE I	
				ES ES	54	83 27.	BK.
				SI SI	85	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20
	(b) T	oken	visual	ization	(Bas	eline)
					2	55	75
							75
	(-)	T 1 .	•	-1:			

(C) IOKEN VISUALIZATION (OURS)

Figure 1: (a) *Question*: what kind of climbing vine or plant is this? Base*line*: tombppry, *Ours*: ivy, *Ground truth answers* = ['fern', 'grape', 'vine', 'ivy', 'unanswerable', 'creeping fig', 'unanswerable', 'unanswerable', 'ivy', 'green']; Bottom left: Weights assigned to each image patch for every token, lighter shades like yellow correspond to higher weights; *Bottom right*: Token attention masks grounded to the input image.