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Abstract

The problem of inferring a stochastic model for gene regulatory networks is addressed here.

The prior biological data includes biological pathways and time-series expression data. We

propose a novel algorithm to use both of these data to construct a Probabilistic Boolean

Network (PBN) which models the observed dynamics of genes with a high degree of precision.

Our algorithm constructs a pathway tree and uses the time-series expression data to select

an optimal level of tree, whose nodes are used to infer the PBN.
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Chapter 1

Introduction

Modelling cellular interaction dynamics has been one of the important issues in systems biol-

ogy [2]. A number of mathematical formulations have been proposed to model these genetic

interactions, including Bayesian networks [6], linear models [10], and Boolean networks [3].

Based on a couple of limitations of BNs (e.g. limitation that BN is a deterministic model),

a stochastic version of BNs, i.e. Probabilistic Boolean Networks (PBN) was proposed by

Shmulevish et al. [9]. It incorporates uncertainty both in data and model selection.

The task of inferring gene regulatory networks from prior biological data is an ill-posed

inverse problem, since multiple network realizations could explain the same biological phe-

nomenon. The search space for potential regulatory genes and the boolean functions asso-

ciated with them, increases exponentially with the number of genes in the network. Use of

biological pathways to infer boolean networks was demonstrated in [4]. Restricted boolean

networks are simplified boolean networks in which the regulatory relationships between genes

is either activation (positive regulation to target gene) or inhibition (negative regulation to

target gene). A three-rule method to construct a restricted Boolean network from time-series

data was proposed by Higa et al. [1].

Here, we propose a novel algorithm which utilizes both biological pathway data and

time-series expression data to construct a Probabilistic Boolean network to model the gene

dynamics. Earlier approaches use a single form of biological data, which could be subjected

to experimental bias. We overcome this limitation in our algorithm by using two different

forms of data to infer the PBN.
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Chapter 2

Preliminaries

2.1 Boolean Networks

2.1.1 Introduction

A Boolean network (BN) G(V,F) on n genes is defined by a set of nodes/genes such that

each node has a Boolean function assigned to it. Here F is the set of Boolean functions

where,

F = {f1, f2, ..., fn}, fi : {0, 1}n → {0, 1}, (2.1)

and V is the set of nodes, V= {v1, v2, ..., vn}. The value vi denotes the state of gene i,

which can be either 0(off) or 1(on). The dynamics of BN can be expressed as,

vi (t+ 1) = fi (v1 (t) , v2 (t) , ..., vn (t)) = fi (v (t)) (2.2)

Here v (t) is called the Gene Activity Profile (GAP).

2.1.2 Restricted Boolean Networks

Restricted Boolean networks are simplified Boolean networks in which the regulatory rela-

tionships between genes obey the following convention: aij = 1 represents a positive regu-

lation from gene xj to xi (activation); aij = −1 represents a negative regulation from gene

2
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xj to xi (inhibition); and aij = 0 means that xj has no effect on xi. The Boolean function

fi (x1, ..., xki) is defined as [5]

xi (t+ 1) =



1, if
∑

j∈{1,...,ki}

aijxi (t) > 0

0, if
∑

j∈{1,...,ki}

aijxi (t) < 0

xi (t) , if
∑

j∈{1,...,ki}

aijxi (t) = 0

(2.3)

2.2 Probabilistic Boolean Networks

2.2.1 Introduction

BN is a deterministic model. However, due to inherent uncertainity associated with a biolog-

ical system, a stochastic model is more appropriate here [9]. Probabilistic Boolean Network

is a stochastic version of BN in which more than one Boolean function can be assigned to a

gene. Thus, for every node, there corresponds a set

Fi = {fj(i)}j=1,2,...,l(i) (2.4)

where each fj
(i) is a possible predictor function for gene i and l (i) is the number of possible

functions for gene i. The probability of choosing the jth predictor function for gene i is cji .

This implies that
li∑

j=1

cji = 1, 0 < cji < 1, for i = 1, 2, ..., n (2.5)

If we choose the jthi Boolean function for gene vi, then the BN can be expressed as BNj1,j2,...,jn

where ji ∈ {1, 2, ..., li}.The probability of choosing BNj1,j2,...,jn is given by

P{f1 = f j1
1 , f2 = f j2

2 , ..., fn = f jn
n } =

n∏
i=1

cjii = qj1j2...jn (2.6)
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2.2.2 Gene Influence in PBN

Different genes can have a varying degree of impact on the predictor function of a gene. The

partial derivative of a Boolean function with respect to variable xj (1 ≤ j ≤ n) is defined as

∂f

∂xj
= f

(
x(j,0)

)
⊕ f

(
x(j,1)

)
(2.7)

where ⊕ is modulo-2 addition operation.

The influence of the variable xi on function fi is the expectation of the partial derivative

with respect to initial joint probability distribution D (x) , x ∈ {0, 1}n.

Ij (f) = ED

[
∂f

∂xj

]
= Pr

{
∂f

∂xj
= 1

}
= Pr

[
f (x) 6= f

(
x(j)
)] (2.8)

where x(j) is same as x except that the jth component is toggled.

2.3 Inferring Regulatory relationships using Biological

Pathways

2.3.1 Introduction

The pathway segment A
t:a,b−−→ B implies that if gene A assumes the value a, then gene B

transitions to b in no more than t subsequent time-stamps [4]. A pathway is defined to be

a sequence of pathway segments of the form A
t1:a,b−−−→ B

t2:b,c−−−→ C. A trajectory is a sequence

of states S0 → S1 → S2 → S3 → S4 resulting from network rules beginning at some initial

state. These pathways represent a priori biological information. Our goal is to generate a

PBN whose trajectories are consistent with the given set of biological pathways. This is an

ill-posed inverse problem that could have multiple solutions or perhaps none.
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2.3.2 Algorithm

1. Consider the Karnaugh maps for each gene state at next time stamp. Initially, this

corresponds to the entire space of Boolean networks for n genes.

2. For each pathway, modify the K-map for the output gene to satisfy the constraint path-

ways. If no conflict with existing K-map arises, repeat the process for next pathway.

3. In case of conflict, fill the non-conflicting minterms in the K-map with the output

gene and introduce new pathways such that the conflicting minterms transition to the

non-conflicting minterms in the next time-stamp. The new pathways are added to the

queue of existing pathways.

4. At some point, if it’s not possible to satisfy the pathways or we return to the original

conflict, then we terminate by concluding it’s not possible to satisfy all constraints

using the Boolean network.

2.3.3 Reduction of Boolean search space

We can impose the additional constraint that the maximum number of predictors allowed for

each gene is 2. Such an upper limit on the number of predictors per gene could be motivated

from the biological consideration that the promoter region for a gene only has enough room

for at most only a few transcription factors to bind. Further reduction in the cardinality

of the family of networks can be achieved by imposing additional constraints such as the

number and relative significance of the attractors, upper bounds on network connectivity,

etc.
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Table 2.1: Regulatory relationships for one input gene

ID xj1(t) xi(t) → xi(t + 1) aij1

1 1 0→ 0 -1

2 1 0→ 1 1

3 1 1→ 0 -1

4 1 1→ 1 1

2.4 Inferring Regulatory relationships using time-series

expression data

2.4.1 Three-rule method

A time-series observation can be treated as a trajectory (or random walk) of the state space

of the network used to model a real biological system. The three-rule method proposed by

Higa et al. [1] is to induce the constraints between genes from the small difference between

two similar states and the difference between their next states. Given an m-point time

series S = {S (1) , S (2) , ..., S (m)} of gene expression profiles, where S (t) ∈ {0, 1}n for t =

1, 2, ...,m, the three rules are as follows:

Rule 1 : Let S(t − 1), S(t), and S(t + 1) be three consecutive states. If S(t − 1) and

S(t) differ by a single gene xk, then for each gene xi such that xi (t) 6= xi (t+ 1), we have xk

directly regulates xi; that is, aik 6= 0.

Rule 2 : Only the active genes at time t can possibly regulate genes at time t+ 1.

Rule 3 : Given two similar states S(t1) and S(t2), the difference between S (t1 + 1) and

S (t2 + 1) must result from the genes in their predecessors S(t1) and S(t2) that are expressed

differently.

Rules 1 and 3 are also applicable to situations where S(t − 1) and S(t) or S(t1) and S(t2)

differ in more than one gene. Cyclically applying these rules to any two states may lead to

a group of constraint inequalities between variables aij.
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Table 2.2: Regulatory relationships for two input genes

ID xj1(t) xj2(t) xi(t) → xi(t + 1) aij1 aij2 Constraint

1 0 1 0→ 0 No -1

2 1 0 -1 No

3 1 1 -1 or 1 -1 or 1 aij1+aij2 ≤ 0

4 0 1 0→ 1 No 1

5 1 0 1 No

6 1 1 1 1

7 0 1 1→ 0 No -1

8 1 0 -1 No

9 1 1 -1 -1

10 0 1 1→ 1 No 1

11 1 0 1 No

12 1 1 -1 or 1 -1 or 1 aij1+aij2 ≥ 0

No: Undetermined ; -1 or 1: Semi-determined

2.4.2 Constraint based analysis of regulatory relationships

Here, we analyze the constraint inequalities in equation (2.3) and use it to infer the regu-

latory relationships. The target gene can switch its state in four different combinations i.e.

0 → 0, 0 → 1, 1 → 0, and 1 → 1. Only the input genes which are active at time (t− 1),

contribute to the change of state at time t. Using equation (2.3), the following inequalities

are true for different cases:

0→ 0 :
∑

j∈{1,...,ki}

aijxi (t) ≤ 0

0→ 1 :
∑

j∈{1,...,ki}

aijxi (t) > 0

1→ 0 :
∑

j∈{1,...,ki}

aijxi (t) < 0

1→ 1 :
∑

j∈{1,...,ki}

aijxi (t) ≥ 0

(2.9)
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Table 2.3: Regulatory relationships for three input genes

ID xj1(t) xj2(t) xj2(t) xi(t) → xi(t + 1) aij1 aij1 aij1 Constraint

1 0 0 1 0→ 0 No No -1

2 0 1 0 No -1 No

3 1 0 0 -1 No No

4 0 1 1 No -1 or 1 -1 or 1 aij2 + aij3 ≤ 0

5 1 0 1 -1 or 1 No -1 or 1 aij1 + aij3 ≤ 0

6 1 1 0 -1 or 1 -1 or 1 No aij1 + aij2 ≤ 0

7 1 1 1 -1 or 1 -1 or 1 -1 or 1 aij1 + aij2 + aij3 < 0

8 0 0 1 0→ 1 No No 1

9 0 1 0 No 1 No

10 1 0 0 1 No No

11 0 1 1 No 1 1

12 1 0 1 1 No 1

13 1 1 0 1 1 No

14 1 1 1 -1 or 1 -1 or 1 -1 or 1 aij1 + aij2 + aij3 > 0

15 0 0 1 1→ 0 No No -1

16 0 1 0 No -1 No

17 1 0 0 -1 No No

18 0 1 1 No -1 -1

19 1 0 1 -1 No -1

20 1 1 0 -1 -1 No

21 1 1 1 -1 or 1 -1 or 1 -1 or 1 aij1 + aij2 + aij3 < 0

22 0 0 1 1→ 1 No No 1

23 0 1 0 No 1 No

24 1 0 0 1 No No

25 0 1 1 No -1 or 1 -1 or 1 aij2 + aij3 ≥ 0

26 1 0 1 -1 or 1 No -1 or 1 aij1 + aij3 ≥ 0

27 1 1 0 -1 or 1 -1 or 1 No aij1 + aij2 ≥ 0

28 1 1 1 -1 or 1 -1 or 1 -1 or 1 aij1 + aij2 + aij3 > 0
No: Undetermined ; -1 or 1: Semi-determined
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For a single regulatory gene xj1 , these inequalities simplify to aij1 = −1, aij1 = 1,

aij1 = −1, and aij1 = 1 respectively. These are presented in Table 2.1. For the case of two

regulatory genes, if a single gene is active, then the regulation of the active gene can be

inferred but that of the other gene is undetermined. When both of input genes are active,

the regulation of both these genes can be determined if the target gene switches its state.

In the other case, the relationship between their regulatory relationships is semi-determined

because it is governed by a constraint equation. The different cases for two input gene

regulatory relationships are presented in Table 2.2. Similar constraint inequalities can be

derived for three input gene regulatory relationships as shown in Table 2.3.

Each time series sample gives rise to one of the cases mentioned in the respected tables.

Let N−1ij , N1
ij, and N−1,1ij denote the number of aij = −1, aij = 1, and aij = −1 or 1

respectively. The degree of determination of a regulatory relationship aij is defined as

dij = |N−1ij −N1
ij| (2.10)

Among multiple input genes in a regulatory relationship, the one with the highest dij is

the first to be decided using majority rule. This value is then put into constraint inequal-

ities for inferring other semi-determined relationships. This procedure is then repeated to

determine all other regulatory relationships.

2.4.3 Error Analysis

The error arising out of ambiguity in determination of aij is defined as ε−1,1ij = min
(
N−1ij , N

1
ij

)
.

Also, the target gene can’t switch its state under null input conditions. This error is denoted

by εnulli . The total error of a predictor set is defined as

ε = εnulli +
∑
j

ε−1,1ij (2.11)

2.4.4 Inference Algorithm

The algorithm used for determining regulatory relationships [8] is given below:
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1. Calculate the total error of each combination of one, two, or three regulatory gene sets.

2. Sort the predictor sets in ascending order of their errors.

3. If a gene appears in the first l sets with a frequency greater than or equal to 50%, then

it is selected as a regulatory gene.



Chapter 3

Proposed Algorithm

3.1 Introduction

The list of biological pathways satisfied by the biological system is available to us. Further, we

assume a priority ordering of these pathways in order of decreasing reliability i.e. pathways

higher in order are more accurate than those lower in order. The complete set of pathways

can’t represent a Boolean network as many these pathways may conflict with each other

regarding prediction of a gene output. On the other hand, a subset of pathways represents

a family of Boolean networks since the Karnaugh maps representing the BNs can contain

several don’t care terms. Our proposed algorithm constructs a m-ary tree with each node

containing a subset of non-conflicting pathways. The invariant followed is that each child

node satisfies the pathways satisfied by the parent node i.e. the pathway set of a child node

is a super-set of that of parent node.

3.2 Construction of Pathway Tree

Here, we describe the method of constructing the pathway tree. The conflict of a pathway

with a node indicates conflict with its pathway set. The following steps are to be followed

for construction of tree:

1. The initial contiguous set of non-conflicting pathways is added to the root node.

11
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2. For each new pathway in the list, traverse the tree from root till it gets added to a

node’s list of pathways. Three cases arise here:

(a) If the node has two children with only one of them conflicting with the current

pathway, set the non-conflicting node as current node. If both children are non-

conflicting, choose either one with equal probability. Else, create a new node

containing the parent’s list of pathways and add the current pathway to its list

and stop.

(b) If the node has only one child, and the child is conflicting, then proceed with

creating a new node as mentioned earlier. Else, either choose the child as current

node or create a new node (as mentioned earlier) with equal probability.

(c) If the node has no children, then create a new node (similar to previous step).

If a new node is created, the procedure terminates for the current pathway. Otherwise,

steps (i), (ii) and (iii) are repeated for the new current node.

3.3 Selecting the optimum level of tree

Each level of the tree created, contains nodes representing a family of BNs and thus a PBN.

The nodes in levels near the root contain fewer pathways while the ones at leaves have more

pathways. Our goal is to strike a balance between them such that an optimum number

of pathways, highly reliable according to information from time-series expression data are

considered in our model. The time-series expression data gives us the regulatory genes (and

their regulation: activation or inhibition) for each gene. At each level, we compute a score

by summing the influences of these regulatory genes on BN across all target genes and across

all nodes of that level. The score is then normalized by the number of nodes in that level.

Let the number of nodes in ith level be ri and let nik denote the kth node in ith level. Let

Si
kp denote the set of regulatory genes for pth gene in nik. Ij

(
f
(p)
nik

)
denotes the influence of
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gene xj on the predictor function of pth gene in nik. The score for level i is defined as,

Score (i) =

ri∑
k=1

n∑
p=1

∑
j|xj∈Si

kp

Ij
(
f (p)
nik

)
ri

(3.1)

The level with the highest score is selected as the optimum level, since it correlates the best

with information from time-series expression data.

Thus, the PBN is constructed by using a linear combination of BN families of the optimum

level and proportionally weighing each node by the size of its sub-tree.



Chapter 4

Performance Evaluation

In a n gene biological system, we randomly generate a set P of non-conflicting pathways.

Then we create m sets of pathways, each containing the set P as subset, plus some additional

pathways, non-conflicting with P. Now, each of m sets of pathways represents a BN family.

We mix them in a random proportion to generate our ground-truth PBN. Let p be the vector

of coefficients of these m BNs in the PBN.

Selecting a random initial state and performing montecarlo simulations of the transition

probability matrix of PBN gives us a time-series data of gene states (boolean values), which

is then used to infer regulatory relationships. The pathway set used for constructing the tree

contains the set P followed by other pathways in those m sets. The algorithm constructs a

tree, with hth level being optimal. Let us assume the hth level has r nodes. The normalized

hamming distance metric for comparing two BN families is

µham =
1

n ∗ 2n

n∑
i=1

2n∑
k=1

[
fi (xk)⊕ f ′

i (xk)
]
, (4.1)

where fi (.) and f
′
i (.) represent Boolean functions of gene i in ground-truth and the inferred

network ; xk represents a binary state vector. The ⊕ operator returns 0.5 in case either

of the operand is a don’t care, while the usual definition holds for other cases. However,

in our case, the ground-truth network contains a weighted combination of m BN families.

Let the reconstructed network contains r BN families. Accordingly, the distance metric for

14
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comparison is as follows

µ
′

ham =

r∑
k=1

[(
m∑
i=1

µham (nk, BNi) ∗ p (i)

)
∗ size (nk)

]
r∑

k=1

size (nk)

, (4.2)

where nk denotes the kth node in the optimum level h.



Chapter 5

Results and Discussion

The experiment described in the previous section is performed for m = 5, 10, 15 and n =

4, 5, 6, 7 genes. For each case, the measure is averaged over an ensemble of 100 biological

systems, each containing a unique set of pathways and time-series expression data, shown

in Table 5.2. The time-series contains 100 points and the value l = 7 was chosen for the

inference algorithm. A sample output of the algorithm for n = 6,m = 10 including the tree,

scores of different levels and the optimum level is shown in Fig. 5.1. Here, ’ABb’ denotes

the pathway A
1:1,b−−→ B and P is the set of non-conflicting pathways. The corresponding

regulatory relationships are shown in Table 5.1. The output PBN is obtained by switching

between BN1, ..., BN5 of optimum level 4 with probabilities
[
2
7
, 2
7
, 1
7
, 1
7
, 1
7

]
respectively as

shown in Fig 5.2.

The distance between ground-truth and the reconstructed PBN reduces with increase in

number of genes. This is due to relatively more number of pathways in networks with lesser

number of genes. Thus, less number of constraints leads to more efficient reconstruction.

Increase in m also reduces the distance measure. This shows more amount of data results in

better inference. However, the difference between m = 10 and m = 15 is less pronounced for

n = 6, 7. This could be due to saturation in quality of new data available. In fact, presence

of more inconsequential pathway information can only degrade the accuracy of the model.

16
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Figure 5.1: Pathway Tree for n = 6,m = 10

Table 5.1: Regulatory Relationships for n = 6,m = 10

aij 1 2 3 4 5 6

1 0 -1 0 0 0 0

2 0 0 0 -1 1 1

3 0 1 0 0 0 0

4 0 0 1 0 -1 0

5 1 0 0 -1 0 0

6 0 -1 1 0 -1 0

Table 5.2: Distance Measure between the ground-truth and reconstructed PBN

n
m = 5 m = 10 m = 15

µ
′

ham µ
′

ham µ
′

ham

4 0.524 0.458 0.428

5 0.444 0.371 0.357

6 0.344 0.281 0.278

7 0.275 0.255 0.243
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Figure 5.2: Output PBN for n = 6,m = 10



Chapter 6

Inference of Yeast Cell Cycle Network

The cell cycle is a vital biological process in which one cell grows and divides into two

daughter cells. It consists of four phases, G1, S, G2, and M. Its regulation is highly conserved

among eukaryotes [7]. From the 800 genes involved in cell cycle process of a budding yeast,

Li et al. [5] constructed a network of 11 key regulators Cln3, MBF, SBF, Cln1, Clb5, Clb1,

Mcm1, Cdc20, Swi5, Sic1, and Cdh1 which we shall refer to as A, B, C, D, E, F, G, H, I, J,

and K respectively. We use the pathways and time-series expression data as given in [5] and

shown in Table 6.1. We then compute the PBN using our algorithm. The resultant pathway

tree is shown in Fig. 6.1. The output PBN switches between BN1, BN2, BN3, BN4, BN5, and

BN6 of optimum level 5 with probability [1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 2
7
] respectively. The reconstructed PBN

is shown in Fig. 6.2. For convenience, only pathways distinct with parent node are shown

for each node. Our algorithm incorporates the essential pathways and gives proportional

weightage to other pathways in modelling the cell cycle trajectory.
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Table 6.1: Temporal evolution of state for yeast cell cycle

Time Cln3 MBF SBF Cln1 Clb5 Clb1 Mcm1 Cdc20 Swi5 Sic1 Cdh1 Phase

1 1 0 0 0 0 0 0 0 0 1 1 Start

2 0 1 1 0 0 0 0 0 0 1 1 G1

3 0 1 1 1 0 0 0 0 0 1 1 G1

4 0 1 1 1 0 0 0 0 0 0 0 G1

5 0 1 1 1 1 0 0 0 0 0 0 S

6 0 1 1 1 1 1 1 0 0 0 0 G2

7 0 0 0 1 1 1 1 1 0 0 0 M

8 0 0 0 0 0 1 1 1 1 0 0 M

9 0 0 0 0 0 1 1 1 1 1 0 M

10 0 0 0 0 0 0 1 1 1 1 0 M

11 0 0 0 0 0 0 0 1 1 1 1 M

12 0 0 0 0 0 0 0 0 1 1 1 M

13 0 0 0 0 0 0 0 0 0 1 1 G1

Figure 6.1: Pathway Tree for Yeast Cell Cycle
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Figure 6.2: Output PBN for Yeast Cell Cycle



Chapter 7

Conclusion

In this project, we proposed an algorithm to infer a PBN for a biological system using

biological pathways and time-series gene expression data. Pathways represent prior biological

knowledge while time series data is obtained experimentally. The model space of PBN is

huge compared to the amount of data available. Thus, a unique solution is impractical, given

the fact that the data is noisy. Our solution overcomes this limitation by learning a model

which makes systematic use of these two different forms of biological data. Future work will

involve integration of multiple forms of such biological data to infer a more robust model.
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